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Abstract. This study examines the robustness of I2P, a well-regarded
anonymous and decentralized peer-to-peer network designed to ensure
anonymity, confidentiality, and circumvention of censorship. Unlike its
more widely researched counterpart, TOR, I2P’s resilience has received
less scholarly attention. Employing network analysis, this research eval-
uates I2P’s susceptibility to adversarial percolation. By utilizing the de-
gree centrality as a measure of nodes’ influence in the network, the find-
ing suggests the network is vulnerable to targeted disruptions. Before
percolation, the network exhibited a density of 0.01065443 and an aver-
age path length of 6.842194. At the end of the percolation process, the
density decreased by approximately 10%, and the average path length
increased by 33%, indicating a decline in efficiency and connectivity.
These results highlight that even decentralized networks, such as I2P,
exhibit structural fragility under targeted attacks, emphasizing the need
for improved design strategies to enhance resilience against adversarial
disruptions.
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1 Introduction

The increasing need of individuals to remain anonymous and ensure the confi-
dentiality of shared information has spurred the development of various privacy-
enhancing technologies, including I2P, TOR, and ZeroNET [8]. The Invisible
Internet Project (I2P) is a decentralized anonymous overlay network with low
latency [20], established in 2003 to safeguard anonymity, ensure confidentiality,
and bypass censorship [12]. To bolster its anonymity and confidentiality features,
I2P employs garlic routing, an enhanced version of TOR’s onion routing, where
messages are bundled into a ”garlic bulb” [20]. To participate in the network,
peers register their routers as nodes, contributing their bandwidth for network-
wide communication [12].

I2P has been examined through multiple lenses. For instance, Wilson and Ba-
zli undertook a “forensic analysis of I2P activities” [22]. Empirical studies have
been conducted to describe network properties, such as churn rate, bandwidth
distribution, geographical distribution, resilience to attacks, and censorship [11,
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10, 8]. Bou Abdo and Hussain [2] mathematically modeled the network to illus-
trate its degree distribution and validated their model with agent-based simula-
tion. Given its dynamic nature, understanding the network’s evolving properties
is crucial. Moreover, the network has experienced substantial growth, expanding
from 25,795 nodes as of January 2019 to 72,653 nodes in April 2025, as indicated
on the I2P metrics page [1]. This expansion could introduce potential risks of
centralization within the decentralized system. Consequently, this study focuses
on analyzing the structure and resilience of I2P against targeted removal attacks
using network analysis techniques.

Network science has emerged as an indispensable methodology, especially in
the age of big data generated across diverse domains [7]. The real strength of
network analysis is in its ability to reveal emergent behaviors stemming from in-
teraction patterns at meso and macro scales, extending beyond mere individual
connections [7]. To gain insight into the I2P resilience, this study measures the
degree of centrality, identifies key players, and subsequently simulates the re-
moval of the three key players to address the research question: How susceptible
is I2P to targeted attacks aimed at eliminating high-centrality nodes?

The remaining sections of this paper are structured as follows: Section 2
is the Literature Review, which provides an examination of prior research and
methodologies applied in the study of the I2P. Section 3 describes the Method-
ology, detailing the data acquisition, cleaning, and analysis procedures. Section
4 presents Results and Discussion. Lastly, Section 5 is the Conclusion, which
summarizes the key insights of the research and proposes a future direction.

2 Literature Review

Since the development of I2P, several studies have attempted to understand the
network. Bou Abdo [2] introduced a mathematical model for I2P’s peer selection
mechanism. The study describes the probability of weighted node selection and
recursively models the resulting network’s degree distribution, allowing for pre-
dictions about network structures and attributes based on its parameters. An
agent-based simulation was used to validate the mathematical model, thereby
establishing a theoretical basis for analyzing I2P’s resilience and peer selection
process [2].

To better understand the network, several studies have conducted empirical
analyses of the I2P network. Authors in [8] conducted an empirical measurement
of the I2P anonymity network over a three-month period, utilizing 20 routers
to collect data on network properties, including the number of active peers and
their geographical distribution. The findings demonstrated that, despite I2P’s
decentralized architecture, it is highly vulnerable to censorship, highlighting the
ease with which access can be restricted and the implications for the network’s
resilience [8].

Authors in [9] analyzed the effectiveness of Machine Learning and Deep
Learning models in predicting the type of traffic and user behavior in I2P. While
significant research efforts have been dedicated to analyzing I2P’s traffic and ser-
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vices, studies investigating the structural properties and resilience of the network
through the lens of network science are limited.

The study [14] modeled I2P as a scale-free network and found that the net-
work collapsed under targeted attacks after only 25–35% of key nodes were re-
moved. At the same time, I2P Prime, a proposed topology, remained intact and
resistant to fragmentation until nearly 50% of its nodes were lost. This shows
that I2P resilience is closely tied to its network structure. However, there are
limited studies on I2P at the network layer [11].

Several studies [21, 8], including a recent work [13], identify the United States,
Russia, and Germany as the dominant hubs. Hence, this study will examine the
resilience of the I2P network to centrality-based attacks from a social network
analysis perspective, thereby contributing to the knowledge about the network.

3 Methodology

The method adopted in this study is social network analysis. The section de-
scribes the data acquisition, preprocessing, and analysis tools, as well as the
evaluation metrics for peer influence on the network.

The study utilizes a subset of data collected on the live I2P network in
our empirical work. To clean the dataset, the routers without their IP address
displayed were removed, and consequently, the nodes connected to them in the
tunnel were also removed from the dataset. In this context, nodes represent other
routers within the I2P network, each uniquely identified by an IP address, and
participate in tunnels that move traffic from one router to another.

According to [12], the I2P network can be mathematically described as a
“directed graph G = (V, E),” where V represents the set of routers (or nodes) and
E denotes the connections (or edges) between them. Each edge (u, v) indicates a
direct link from router u to router v. For our network analysis, we designated the
“Scr IP” as the source node and the “Dst IP” as the target node. The dataset
utilized consists of 3,081 nodes and 101,105 edges. The following tools were used
for the analysis and visualization. “”

– igraph, a “software package for complex network research”[6].
– RStudio, an ”Integrated Development Environment for R”[18]

3.1 Network structure Analysis

This subsection aims to explore and describe the fundamental structural charac-
teristics of I2P by analyzing the I2P network dataset through the lens of social
network analysis, to gain insights that will help answer our research question.
Understanding these structural properties is a crucial step in identifying the key
players within the network that will be the focus of our targeted node removal
attack.

The formation of triangles occurs in a network, and one common way to
measure this is by calculating transitivity. Transitivity measures the percentage
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of connected pairs of nodes that are also part of a triangle [19]. We found a
transitivity of 0.003351906. However, our graph is directed, and transitivity alone
does not provide a clear picture of the network’s structure [19].

Fig. 1. Detected Communities

Hence, we employed the Louvain community detection algorithm on the net-
work data and discovered 128 groups with a modularity of 0.76. Modularity
measures the number of connections inside these groups, which is much higher
than what you would expect randomly [15]. A positive modularity score indi-
cates that the network is indeed organized into well-defined communities [15].
Our analysis yielded a high modularity score of 0.76, confirming that the net-
work exhibits clear community structure. Figure 1 illustrates the groups with
more than five members found in the network.

3.2 Percolation

It is essential to discuss the concept of percolation to assess the impact of remov-
ing central nodes as a targeted attack on I2P. Percolation is defined by [17] as a
process that disrupts network connectivity by removing nodes or links, providing
a valuable framework to understand how the structure of a network contributes
to its robustness.
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Authors in [16] describe the degree centrality as the number of edges con-
nected to a particular node in the network. In the case of directed networks, this
measure is often split into two components: in-degree, which counts the num-
ber of edges directed toward a node, and out-degree, which counts the number
of edges a node directs to others. Among the vast array of centrality measures
proposed over the years, Degree Centrality, Closeness Centrality, Betweenness
Centrality, and Eigenvector Centrality remain central due to their frequent and
practical application in understanding node influence and importance in various
networked systems [4, 16]. They are considered foundational in network analysis
[16].

The distributed architecture of the garlic network is designed to handle ran-
dom removal of nodes (churn). Complex networks generally exhibit a fascinating
ability to withstand both accidental failures and deliberate attacks [17]. Al-
though failures randomly eliminate network components, attacks strategically
target influential nodes or edges to inflict maximum damage [3]. In attacks tar-
geting network centrality, influential nodes are systematically eliminated based
on their importance, quantified by a specific centrality metric, with the most
central nodes removed first [3]. This strategic removal can inflict far greater
damage than random disruptions by exploiting the critical roles these nodes
play in network connectivity and function.

For the percolation exercise, we employed both manual and automated tech-
niques. In the manual removal process, we did not recalculate the centrality
scores after each removal. Instead, we evaluated the degree of centrality of the
top ten nodes central to the network and removed the three most central nodes.
On the other hand, the automated approach utilized a for-loop, where the de-
gree centrality is recalculated after removing the most central node. This process
ensures that the next node selected for removal in each iteration has the highest
degree among all nodes.

4 Result and Discussion

Node centrality can be regarded as an effort to measure the structural impor-
tance of actors in a network. To analyze and evaluate the influence of a node
within a network, employing network measures like centrality measures is a start-
ing point [5]. Our analysis reveals a network of 3,081 nodes and 101,105 edges
with a transitivity measure of 0.003351906, indicating a very low number of pos-
sible triangles. However, the Louvain community detection algorithm identified
128 distinct communities within the graph, with a modularity score of 0.76, in-
dicating that the identified groups are tightly connected within themselves and
have very few connections to other groups.

Some key metrics are essential for understanding centralization within a net-
work. One such metric is the degree of centralization score. The high score of
0.8194817 observed in this study indicates that the network’s degree distribution
is heavily skewed toward a small number of highly connected hubs. This concen-
tration of connectivity makes the network vulnerable to targeted attacks. The
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modularity score further reinforces this finding by revealing well-defined clusters
of nodes within the network. The network’s susceptibility to centrality-based
attacks was confirmed by the drop in density and the substantial increase in
average path length observed during our percolation exercise.

To pinpoint the most influential actors within our network, we employed
degree centrality. By calculating the total degree centrality, we focused on iden-
tifying nodes that receive a high number of incoming and outgoing connections,
suggesting they are influential within our network. Table 1 presents the in-degree,
out-degree centrality, and all-degree centrality of nodes in the network with the
last octet of the IP address redacted. The central node, IP address 23.137.254.xxx
exhibits the highest in-degree of 2571 and significantly the highest out-degree of
2541 among the top ten nodes, indicating a hub with a large number of incoming
connections and almost equal outgoing connections within the network. Inter-
estingly, the IP is located in the United States, consistent with findings from
[21, 8, 13], which identifies that the United States is the major contributor to the
network. The Degree centrality of the top ten nodes, presented by country, is
shown in Figure 2.

Table 1. Top nodes by Degree

IP Address InDegree IP Address OutDegree IP Address TotalDegree

23.137.254.xxx 2571 23.137.254.xxx 2541 23.137.254.xxx 5112
185.148.1.xxx 1514 185.148.1.xxx 1495 185.148.1.xxx 3009
62.60.150.xxx 1441 69.243.247.x 888 62.60.150.xxx 2237
69.243.247.x 872 62.60.150.xxx 796 69.243.247.x 1760
78.139.70.xx 839 78.139.70.xx 650 78.139.70.xx 1489
83.31.208.xxx 538 45.82.122.xxx 640 45.82.122.xxx 901
84.251.40.xx 477 78.107.238.xx 618 83.31.208.xxx 698
185.252.177.xx 448 91.198.115.xx 555 185.252.177.xx 694
103.167.234.xx 433 162.218.65.xx 553 78.107.238.xx 687
85.130.157.xxx 384 82.130.24.xxx 419 91.198.115.xx 653

Before the percolation analysis, the network metrics recorded were a density
of 0.01065443 and an average path length of 6.842194. Both manual and auto-
mated processes identified the same set of nodes as the top three most central.
After the removal of the first node, 23.137.254.xxx, the density decreased to
0.0101223, while the average path length increased drastically to 8.17743. With
the removal of the second node, 185.148.1.xxx, we observed a significant decline
in density to 0.009811376, while the average path length increased to 9.091371.
Following the removal of the third node, 62.60.150.xxx, the density decreased to
0.009581559, and the average path length increased to 9.113329.

The sequential removal of these three key players had a profound impact on
the network’s structural properties. The changes in network density following
the targeted removal are illustrated in Figure 3, showing a decrease in network
density from 0.01065 to 0.00958, indicating a steady loss of connectivity and
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Fig. 2. Degree per Country for Top 10 Central Nodes

Fig. 3. Network Density over Removal Fig. 4. Avg. Path Length Over Removal

an increasingly sparse network. Similarly, Figure 4 shows that the average path
length increased from 6.84 to 9.11, suggesting that more steps are required to
communicate effectively. This combination of decreasing density and increasing
path lengths reflects a reduction in network cohesion and efficiency, characteristic
of declining robustness.

The vulnerability of the network becomes even more concerning in the pres-
ence of a global passive adversary capable of monitoring large portions of the
network over extended periods. Such an adversary can perform traffic analy-
sis, gradually map out the topology, and identify critical nodes. Over time, this
knowledge enables the adversary to strategically remove or compromise exactly
those nodes that would most severely disrupt connectivity. Our results already
demonstrate that targeted removal of just three key nodes significantly reduces
network density and increases path length.

The observed centralization score supports the percolation results, indicating
that the network is becoming increasingly centralized, and the removal of key
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nodes may lead to a decrease in network density and a substantial increase in
average path length.

5 Conclusion

In summary, by employing social network analysis, this study investigated the
resilience of the I2P network to adversarial attacks. The findings reveal a vulner-
ability to attacks targeting central nodes, as their removal can disrupt network
connectivity. The most influential nodes, characterized by a high number of con-
nections, represent a critical point of failure. With the removal of the three most
central nodes, we found that the average path length of the network increases
while the density decreases. These findings suggest the I2P networks may be vul-
nerable to centrality-based attacks, offering valuable insights for future security
enhancements.

6 Limitation and Future Work

The main limitation of this study is the dataset size. An attacker with fewer
resources would still be able to observe more than the nodes included in this
study. This introduces a sampling bias, as the partial view of the network may
not fully capture the true structural complexity and resilience characteristics of
the live I2P network. Consequently, the results may slightly overestimate or un-
derestimate the network’s vulnerability under real-world adversarial conditions.
In future work, a more robust dataset collected from the live I2P network should
be utilized to validate the findings presented in this study.
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